

HUB Build Northwest Awards Submission
SIMPLOT COMPANY | RAINIER HIGH BAY

Moses Lake, WA

NOVEMBER
2025

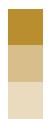


TABLE OF
CONTENTS

PROJECT SUMMARY.....	2
PROJECT SUBMISSION FORM	3
DIFFICULTY IN CONSTRUCTION	4
UNUSUAL CONSTRUCTION TECHNIQUES..	6
FINAL APPEARANCE & QUALITY.....	8
TIMELINESS OF COMPLETION.....	11
COMPANY SAFETY PROGRAM.....	12
LETTER FROM SIMPLOT	14
ADDITIONAL IMAGES.....	15

PROJECT SUMMARY

HUB BUILD NORTHWEST AWARDS
SIMPLOT COMPANY | RAINIER HIGH BAY

NOVEMBER
2025

SIMPLOT COMPANY PROJECT SUMMARY

The Simplot Rainier Freezer Project stands as a pioneering example of modern cold storage and distribution, meticulously engineered to optimize high-volume, high-efficiency product handling within a fully automated operational framework. Encompassing a vast 227,019 sq. ft., the facility is thoughtfully laid out to integrate every aspect of cold chain logistics, from initial receipt of goods to final dispatch. Its strategic location, directly connected to Simplot's adjacent potato processing plant, enables seamless coordination, and minimizing transit times.

A centerpiece of the project is the expansive 75,578 sq. ft. refrigerated truck dock, which is consistently maintained at 35°F to preserve product integrity. This dock is equipped to handle significant traffic, offering thirteen truck positions and four rail positions, alongside two specialized Automated Truck Unload (ATU) docks. The inclusion of these ATU docks highlights the facility's commitment to automation, allowing for rapid and efficient unloading of product with minimal manual intervention. Adjacent to the dock, a 26,980 sq. ft. automation pit houses sophisticated conveyor systems and automated carts. These systems are designed to move inbound and outbound products swiftly and accurately, dramatically reducing the need for manual labor while boosting operational speed and throughput.

At the heart of the Rainier Freezer is its 136,224 sq. ft. rack-supported Automated Storage and Retrieval System (ASRS) freezer, maintained at a frigid -5°F to ensure optimal product preservation. This high-density storage area is engineered to accommodate an impressive 64,896 pallet positions, leveraging vertical space with racking systems that soar to 135 feet in height. The ASRS is serviced by eight fully automatic stacker cranes, which are seamlessly integrated with advanced conveyor technology. This setup allows for rapid, precise storage and retrieval of products, ensuring that every pallet is tracked and moved efficiently in response to real-time inventory demands.

The freezer utilizes a low-oxygen fire protection system designed to minimize the risk of combustion in an oxygen-reduced environment. This system is further enhanced by VESDA (Very Early Smoke Detection Apparatus) technology, providing continuous air sampling and early detection of smoke particles to ensure rapid response to potential fire hazards. The combination of low-oxygen and advanced detection systems reflects Simplot's commitment to maintaining the highest standards of safety for both personnel and products.

Supporting the main operational areas are 3,978 sq. ft. of administrative offices and 11,239 sq. ft. of technical support rooms. These spaces are critical to the smooth functioning of the facility, housing essential infrastructure such as electrical systems, refrigeration controls, low-oxygen control panels, and maintenance workshops. The technical support rooms ensure that all automation and safety systems are monitored and maintained, while the administrative offices provide space for management and coordination activities.

Overall, the Simplot Rainier Freezer Project exemplifies a benchmark in cold storage facility design, combining advanced automation, robust safety protocols, and operational efficiency. Its fully integrated systems and innovative engineering solutions position it as a leader in the industry, capable of meeting the demanding needs of high-volume food processing and distribution while maintaining the highest standards of product quality, worker safety, and environmental stewardship.

PROJECT SUBMISSION FORM

HUB BUILD NORTHWEST AWARDS
SIMPLOT COMPANY | RAINIER HIGH BAY

PROJECT
SUBMISSION FORM

NOVEMBER
2025

The 2025 HUB Build Northwest Awards

Entry Form - Contractors

PROJECT TYPE

CHECK ONE (See Project Category section in Entry Packet for detailed descriptions of each project type.)

- | | | |
|---|--|---|
| <input type="checkbox"/> Building (under \$10 million) | <input type="checkbox"/> Heavy & Utilities | <input type="checkbox"/> Small Projects |
| <input type="checkbox"/> Building (\$10 million and over) | <input type="checkbox"/> Sub-Contractor | <input type="checkbox"/> Special Projects |
| <input type="checkbox"/> Highway & Transportation | <input type="checkbox"/> Out of Area | |

CHECK ONE

- New Construction Renovation

CONTRACTOR INFORMATION

Must be an Inland Northwest AGC member in good standing

Company Name (list all if a joint venture): _____

Entry Submitted By: _____ Title: _____

Email: _____

PROJECT TEAM INFORMATION

Owner: _____

General Contractor: _____

Lead Architect: _____ Lead Engineer: _____

Major Sub-Contractors: _____

PROJECT INFORMATION

Project Name: _____

Location: _____

Contract Amount: _____

Date Project Started: _____

Completion Date: _____

What was the percentage of volume of work on this project performed with your own field personnel? _____ %

Were there any fatalities on this project? Yes No

Attach additional sheets if necessary

Send this form and your completed entry package to:

Inland Northwest AGC
Build Northwest Awards
4935 E. Trent Ave.
Spokane, WA 99212

All entries must be received no later than 4:00 pm on November 6, 2025 at the AGC office. There will be no exceptions or extensions.

DIFFICULTY IN CONSTRUCTION

HUB BUILD NORTHWEST AWARDS
SIMPLOT COMPANY | RAINIER HIGH BAY

DIFFICULTY IN
CONSTRUCTION

NOVEMBER
2025

SIMPLOT COMPANY

DIFFICULTY IN CONSTRUCTION

The construction of the Rainier Freezer presented significant technical, logistical, and regulatory challenges that demanded advanced engineering solutions, rigorous project management, and persistent collaboration among a wide array of stakeholders. From the earliest planning stages through final completion, the project team faced a series of obstacles that tested their expertise and adaptability.

One of the most formidable technical hurdles stemmed from the site's poor soil conditions and high groundwater table. The location, selected for its proximity to the Simplot processing plant and transportation infrastructure, required extensive geotechnical improvements to create a stable foundation for the massive freezer facility. To address these subsurface issues, the project implemented a comprehensive ground improvement program that involved the installation of more than 3,600 rammed aggregate piers, methodically placed in a dense 5-foot by 5-foot grid beneath the entire freezer slab. These piers, driven deep into the ground, were designed to reinforce the weak soils and distribute the building's enormous loads, ensuring long-term stability and performance. The installation process itself was a logistical feat: with each rig capable of installing only about thirty piers per day, the project required the careful coordination of multiple drilling crews and heavy equipment operating simultaneously to meet the demanding construction schedule. Complicating matters further, the region's seasonal irrigation runoff regularly flooded the site, leading to high groundwater levels that threatened to delay progress. Nearly every phase of excavation—from foundation work to utility installation—necessitated temporary dewatering systems, which added another layer of complexity and required constant monitoring to keep the site dry and safe for construction activities.

Beyond the technical challenges, the project's location adjacent to the existing Simplot processing plant introduced significant logistical and organizational complexities. Although the freezer and processing plant shared the same expansive 94-acre site, they were managed as distinct projects, each with its own budget, timeline, and set of objectives. This separation required a high degree of coordination to ensure that construction activities did not interfere with each other, particularly as multiple specialty subcontractors and Fisher's own self-perform crews (responsible for critical scopes such as roofing, civil works, and concrete foundations) were deployed across both projects. Maintaining seamless progress on both facilities demanded meticulous manpower management, daily communication between project leaders, and precise scheduling to deconflict activities and avoid bottlenecks. The teams had to remain agile, constantly adjusting their plans to accommodate shifting priorities, weather events, and unforeseen site conditions.

Regulatory and environmental requirements added yet another dimension of complexity to the project. A federally protected wetland bisected the construction site, creating both a physical and administrative barrier to development. Before any major work could commence, the team had to work closely with the U.S. Army Corps of Engineers, local county agencies, and the regional irrigation district to develop a strategy for relocating and mitigating the wetland in compliance with federal, state, and local regulations. This process entailed years of advance planning, detailed environmental studies, and a multi-year permitting process, during which the team was required to demonstrate how the project would minimize impacts and provide appropriate compensatory mitigation. The need to balance construction goals with environmental stewardship forced the team to innovate and maintain open lines of communication with regulators and community stakeholders.

Ultimately, overcoming these intertwined technical, logistical, and regulatory challenges required a blend of creativity, persistence, and a high level of coordination across all project teams. The success of the Rainier Freezer stands as a testament to the project team's ability to adapt, collaborate, and deliver a world-class facility under some of the most demanding conditions in the industry.

UNUSUAL CONSTRUCTION TECHNIQUES

HUB BUILD NORTHWEST AWARDS
SIMPLOT COMPANY | RAINIER HIGH BAY

UNUSUAL
CONSTRUCTION
TECHNIQUES

NOVEMBER
2025

SIMPLOT COMPANY

UNUSUAL CONSTRUCTION TECHNIQUES

Unique facilities require unique and sometimes unusual construction techniques. This was especially evident during the construction of the Rainier Freezer, where every stage—from the placement of the high bay slab to the installation of the towering racking system and the final application of building signage—demanded custom solutions and detailed planning.

Concrete Placement of High Bay Slab: Constructing the Automated Storage and Retrieval System (ASRS) freezer called for a radically different approach from traditional warehouse facilities, starting with the concrete slab itself. Instead of using conventional rebar reinforcement, the project team selected a unique concrete mix design that incorporated steel fiber reinforcement. This innovation not only provided the necessary strength and durability for the massive slab but also streamlined subsequent work, such as anchor bolt drilling and setting for the 135-foot-tall racking system. The choice of steel fibers reduced labor and installation time, allowing for greater efficiency and improved performance under the heavy dynamic loads imposed by automated equipment.

To address the challenges associated with moving and placing such large volumes of specialty concrete, the team opted for a telebelt system rather than a traditional concrete line pump or boom truck. This decision was driven by the risk of plugged lines due to the steel fibers and ensured a continuous, controlled pour across the vast slab area. Unlike most warehouses, where slabs are poured within enclosed or semi-enclosed spaces to protect the curing process, these extensive slab placements were executed in the open air. This was an unavoidable reality: the ASRS facility's walls are attached directly to the racking system, which means the racking cannot be erected until the slab is fully placed and cured. In contrast, conventional warehouse walls are typically fixed to structural steel, independent of slab completion, allowing for a different construction sequence.

Racking Installation: The installation of the ASRS racking system introduced another layer of complexity and required highly specialized equipment and labor practices. Once the concrete slab was ready, rack sections were pre-assembled on the slab and then lifted into place using a powerful crawler crane capable of handling the immense height and weight

of each section. After each section was set, expert climbers—trained to work safely at extreme elevations—positioned themselves within the racks to quickly and securely bolt the new section to the already standing structure. These operations were conducted at heights exceeding 100 feet, with strict adherence to 100% tie-off safety protocols to protect workers against falls.

Racking installation was meticulously sequenced in phases, strategically coordinated with follow-on activities like building envelope construction. This phased approach enabled envelope work to proceed efficiently as soon as safe access was available, reducing project downtime and maintaining momentum across multiple trades.

Building Signage Installation: Even the finishing touches demanded extraordinary planning and risk management, especially for tasks rarely encountered in conventional projects. Installing the massive, illuminated Simplot signage—measuring approximately 15 feet tall by 50 feet long and positioned 115 feet above ground—was a feat of engineering and logistics. Months of preparation went into coordinating multiple cranes for simultaneous lifts, ensuring the signage could be safely hoisted and secured at such an elevation. The process required seamless real-time communication between rack climbers working inside the building and personnel operating cranes outside. This coordination was essential for synchronizing movements, aligning the signage precisely, and managing the inherent risks of working at great heights.

Complicating matters, the installation occurred during the "pull-down" phase, when the internal temperature of the facility was already subfreezing. Rack climbers inside the building faced not only the physical challenges of high-altitude work but also the discomfort and safety risks posed by cold conditions. Their ability to adapt and maintain focus under these circumstances was critical to the successful completion of the signage installation.

In summary, the construction of the Rainier Freezer's ASRS facility was defined by its use of innovative materials, advanced construction technologies, and rigorous safety and coordination protocols. Each phase—whether pouring the high bay slab, erecting the towering racks, or installing signature signage—required tailored techniques and exceptional teamwork, setting a new standard for complex, automated cold storage construction projects.

FINAL APPEARANCE & QUALITY

HUB BUILD NORTHWEST AWARDS
SIMPLOT COMPANY | RAINIER HIGH BAY

FINAL APPEARANCE
& QUALITY

NOVEMBER
2025

SIMPLOT COMPANY

FINAL APPEARANCE & QUALITY

Final Appearance

The Rainier Freezer is a visually striking and highly functional facility, easily recognizable from Interstate 90 due to its impressive height of 135 feet and modern architectural profile. Its design is a testament to the seamless integration of advanced automation technologies with carefully considered construction strategies, resulting in both operational excellence and an iconic presence within the region.

A central aspect of the facility's design is the exceptional quality of its building envelope—critical for any refrigerated warehouse, but especially vital in a project of this scale and complexity. Achieving optimal envelope performance begins with the deliberate selection of experienced trade partners and the use of high-quality materials, supported by a rigorous focus on quality control throughout the construction process. At Rainier High Bay Freezer, a vapor-tight construction approach was meticulously implemented, with all details at critical junctures thoroughly reviewed by both in-house industry experts and specialized installation teams. This careful scrutiny ensures constructability and long-term performance, while also allowing for continuous improvement as site-specific challenges emerge. Even with proven construction details, the team remained agile, adapting their strategies to address unique project nuances and consistently striving to meet or exceed the end goal of airtightness and thermal efficiency.

distinction. Its commanding stature and state-of-the-art systems make it a landmark on the local landscape, symbolizing progress in both design and construction methods for the cold storage industry. The project's success reflects the collaborative efforts and expertise of all involved, and establishes a new standard for high-performance, automated cold storage facilities in Washington and beyond.

Sustainability

At Fisher Construction Group, our commitment to conducting business in a socially responsible manner extends to every facet of our operations, ensuring that our work brings tangible benefits to the communities in which we build, our employees, our clients, and the broader environment. As a leading commercial and industrial construction company, we do not simply adhere to industry norms; rather, we strive to set new benchmarks in corporate responsibility, always upholding the highest standards of integrity, safety, and environmental stewardship in our projects and partnerships.

We understand that the decisions we make during the design and construction phases have far-reaching consequences. Each choice—from materials selection to construction methods—can significantly influence not just the immediate project site, but also the long-term operational costs and sustainability for our clients. For this reason, we prioritize the integration of sustainable principles and practices into every project. Our goal is to deliver spaces that are not only highly functional and efficient, but also minimize environmental impact, enhance occupant well-being, and contribute to the lasting vitality of the communities we serve.

Sustainability and resource efficiency were foundational elements in the planning and execution of the Rainier Freezer project. Our approach went beyond compliance with conventional standards to incorporate advanced strategies for water, energy, and resource management. For example, the facility employs a closed-loop approach to water stewardship: condensate generated by the refrigeration system is captured and reused directly in potato processing operations. This not only conserves water but also reduces the facility's overall demand on external resources, demonstrating a practical application of circular economy principles.

The integrity of the building envelope was approached with the same rigor. By exceeding code requirements and installing nine inches of roof insulation (R-50), we dramatically reduced thermal transfer, thereby minimizing the refrigeration load and lowering energy consumption over the life of the facility. Such enhancements directly translate to operational cost savings for our client while also reducing the facility's carbon footprint.

Further energy efficiency was achieved through the installation of Variable Frequency Drives (VFDs) on all major equipment. These drives allow the speed of motors to be precisely adjusted in real time to match operational demand, which not only reduces electricity use but also extends the lifespan of the equipment, reducing maintenance and replacement costs. The inclusion of high-efficiency LED lighting throughout the freezer further curtails energy consumption and lowers the amount of heat generated within the facility, contributing both to operational efficiency and occupant safety.

Innovative resource planning is also evident in the facility's water supply and distribution system. Utility water is

transported from the Moses Lake plant via a network of storage tanks and pipelines, optimizing the use of existing resources. Simultaneously, reverse osmosis water produced during processing is routed back to the main campus, reducing the facility's reliance on local groundwater wells and supporting the broader region's water sustainability goals. The integration of these systems reflects a comprehensive approach to resource management, balancing environmental stewardship with the practical needs of high-performance industrial operations.

Together, these measures exemplify our unwavering commitment to environmental responsibility, operational efficiency, and superior design. By embedding sustainability into every project phase, Fisher Construction Group not only delivers innovative, high-quality facilities like the Rainier Freezer, but also helps set new standards for what is possible in modern commercial and industrial construction. Our approach ensures that each project serves as a positive force—economically, socially, and environmentally—well into the future.

TIMELINESS OF COMPLETION

HUB BUILD NORTHWEST AWARDS
SIMPLOT COMPANY | RAINIER HIGH BAY

NOVEMBER
2025

SIMPLOT COMPANY **TIMELINESS OF COMPLETION**

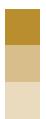
Maintaining the project schedule required precise sequencing and adaptive management throughout every phase of construction. One of the most challenging aspects was the installation of the rack system, which was identified as a critical-path activity due to its direct impact on subsequent trades. The installation process was meticulously phased, allowing uninterrupted access for mechanical, electrical, plumbing (MEP), and automation teams. By coordinating the timing of rack installation, project managers prevented costly rework and maintained a continuous workflow, even as conditions changed and new challenges arose.

At the height of construction activity, more than 250 tradespeople worked simultaneously across both the freezer and adjacent plant sites. This workforce was strategically managed to maximize productivity and safety, with multiple cranes and aerial lifts operating in tandem. Coordination among these teams was essential, not only to maintain progress but also to avoid congestion and potential safety hazards, especially given the complex nature of high-bay freezer construction and the presence of automated systems being installed in parallel.

To support this level of activity and ensure the project remained on track, project management implemented a robust communication framework. Daily coordination meetings were held to review progress, identify issues, and set clear priorities for the day. These meetings brought together foremen, subcontractors, vendors, and key stakeholders, fostering transparency and collaboration. In addition, digital collaboration tools were leveraged for real-time updates, document sharing, and task tracking, allowing teams to respond quickly to emerging issues and changes in scope. Clear lines of escalation were established so that any challenges could be addressed efficiently, minimizing delays and maintaining accountability across all parties involved.

Financial transparency was another cornerstone of the project's success. Open-book cost reporting was implemented, providing Simplot leadership with up-to-date financial data and forecasts. This allowed decision makers to act promptly, balancing schedule demands with budgetary constraints and ensuring that resources were allocated where they were needed most. Regular reviews of expenditures and progress helped maintain fiscal discipline and avoid overruns, even as environmental and logistical complexities threatened to disrupt timelines.

Despite facing significant challenges—including subfreezing temperatures, intricate crane operations, and the integration of advanced automation—the Rainier Freezer project was delivered efficiently and effectively. The success of the project is a testament to exceptional planning, collaboration, and execution by all involved. Through careful sequencing, proactive management, and open communication, the team was able to overcome obstacles and deliver a state-of-the-art facility that sets a new benchmark for cold storage construction in Washington.


COMPANY SAFETY PROGRAM

HUB BUILD NORTHWEST AWARDS
SIMPLOT COMPANY | RAINIER HIGH BAY

COMPANY
PROGRAM

NOVEMBER
2025

SIMPLOT COMPANY COMPANY SAFETY PROGRAM

Fisher's Commitment to a Safe Workplace

While many of our current company safety rules meet or exceed state safety requirements, Fisher's specific company requirements regarding employee safety are foundational to all our projects. Some of our program highlights include that all site personnel are required to complete a safety orientation before working on the job site. This is verified by hard hat stickers for all persons successfully completing the course. The safety orientation process consists of a custom 20-minute video developed by our safety department, a review of on site-specific safety issues, and a personal site orientation, followed by a simple test intended to verify that each participant understands the requirements.

Safety program enforcement includes written warnings for minor violations with zero tolerance for violations that may result in bodily injury or property damage such as fall protection violations. Written warnings are issued in triplicate form, with copies provided to the offending employee, his/her supervisor, and the company personnel file or the file of the subcontractor/employer.

Regularly scheduled and intermittent safety meetings are held for all site personnel. Attendance is mandatory at the weekly safety meetings which include discussion of a topic relevant to the work at hand along with a review of specific issues relating to the work being done currently. Additional meetings occur when work requires pre-planning, and at the beginning of shifts when the work necessitates a more intensive discussion of the work to be done, such as steel erection or introduction of anhydrous ammonia.

Safety practices are documented at all phases of the project. These include daily job hazard analyses, training programs, orientations, and disciplinary measures when taken.

Fisher is a member of ISNetworld, an internet-based document verification provider serving 450 clients and over 60,000 contractor/service providers. ISNetworld facilitates the collection of self-reported information from contractors and maintains it in a centralized database. The information collected is configured to each hiring client's specific requirements and includes items such as management system questionnaires, health and safety programs, injury and illness records, insurance certificates and workers' compensation and experience modification rates.

Site Specific Safety

Safety was a cornerstone of the Rainier Freezer construction. With hundreds of workers operating across the 94-acre site at any given time, the environment was highly dynamic and presented unique challenges. Multiple cranes, aerial lifts, and heavy equipment were in simultaneous operation, requiring diligent oversight and coordination to prevent accidents and maintain safe working conditions. Despite these complexities, the project maintained an exceptional safety record,

achieving zero major incidents throughout the build.

Three full-time safety managers were dedicated to overseeing safety in the field, but the site-wide safety culture extended far beyond their direct influence. Every employee onsite was actively engaged in maintaining safety standards, demonstrating that accountability and vigilance were shared responsibilities. This collective commitment was reinforced through a variety of proactive measures, including daily pre-task safety meetings that addressed specific hazards and procedures for the day's activities, regular toolbox talks to review best practices and lessons learned, and ongoing safety audits to identify and mitigate risks before they could escalate.

Comprehensive crane and lift coordination plans were developed and implemented to ensure safe operation in congested work zones, particularly during high-risk activities involving multiple pieces of heavy equipment. These plans detailed clear communication protocols, equipment staging requirements, and emergency response procedures, fostering an environment where safety was always prioritized over speed or convenience.

Fisher leadership played a vital role in cultivating a safety-first mindset by fostering open communication, encouraging the reporting of potential hazards, and holding all personnel accountable for their actions. Supervisors and foremen were empowered to stop work if unsafe conditions were identified, and workers were encouraged to speak up about concerns without fear of reprisal. This culture of vigilance and mutual support ensured that all personnel could return home safely each day, regardless of the challenges encountered onsite.

The project's outstanding safety performance stands as a testament to the company's unwavering commitment to protecting workers while managing a complex and demanding construction environment. By embedding safety into every aspect of the project—from planning and coordination to daily operations—Fisher demonstrated that operational excellence and worker well-being go hand in hand, setting a benchmark for future construction projects of similar scale and complexity.

LETTER FROM SIMPLOT

HUB BUILD NORTHWEST AWARDS
SIMPLOT COMPANY | RAINIER HIGH BAY

LETTER FROM
SIMPLOT

NOVEMBER
2025

 SIMPLOT COMPANY

LETTER FROM SIMPLOT

"The Rainier Freezer project represents a major milestone for Simplot in advancing our cold chain capabilities, and Fisher Construction Group proved to be a capable and dependable partner throughout. Their team successfully delivered a 227,000+ square foot facility that includes a 136,000 square foot, 135-foot-tall rack-supported ASRS freezer with nearly 65,000 pallet positions, and a 75,000 square foot refrigerated dock with truck, rail, and ATU capabilities. Fisher's ability to manage complex site conditions, coordinate with multiple subcontractors, and align construction with our adjacent processing plant was critical to the project's success. Throughout the process, Simplot provided strategic direction and operational input to ensure the facility met long-term business goals. Fisher's structured approach to planning, sequencing, and communication—combined with Simplot's clear vision—resulted in a highly automated, efficient cold storage facility that strengthens our supply chain and supports our long-term strategy."

Fernando Corrado

JR Simplot Company

Senior Engineering Manager - Global Foods

ADDITIONAL IMAGES

HUB BUILD NORTHWEST AWARDS
SIMPLOT COMPANY | RAINIER HIGH BAY

ADDITIONAL IMAGES

NOVEMBER
2025

Geopiers

FISHER CONSTRUCTION GROUP

Geopiers

FISHER CONSTRUCTION GROUP

Shared Site With Plant

Shared Site With Plant

FISHER CONSTRUCTION GROUP

Concrete During Winter Months

Concrete During Winter Months

Concrete During Winter Months

Concrete During Winter Months - Temp Mudslab Heater

Water Supply

FISHER CONSTRUCTION GROUP

Water Supply

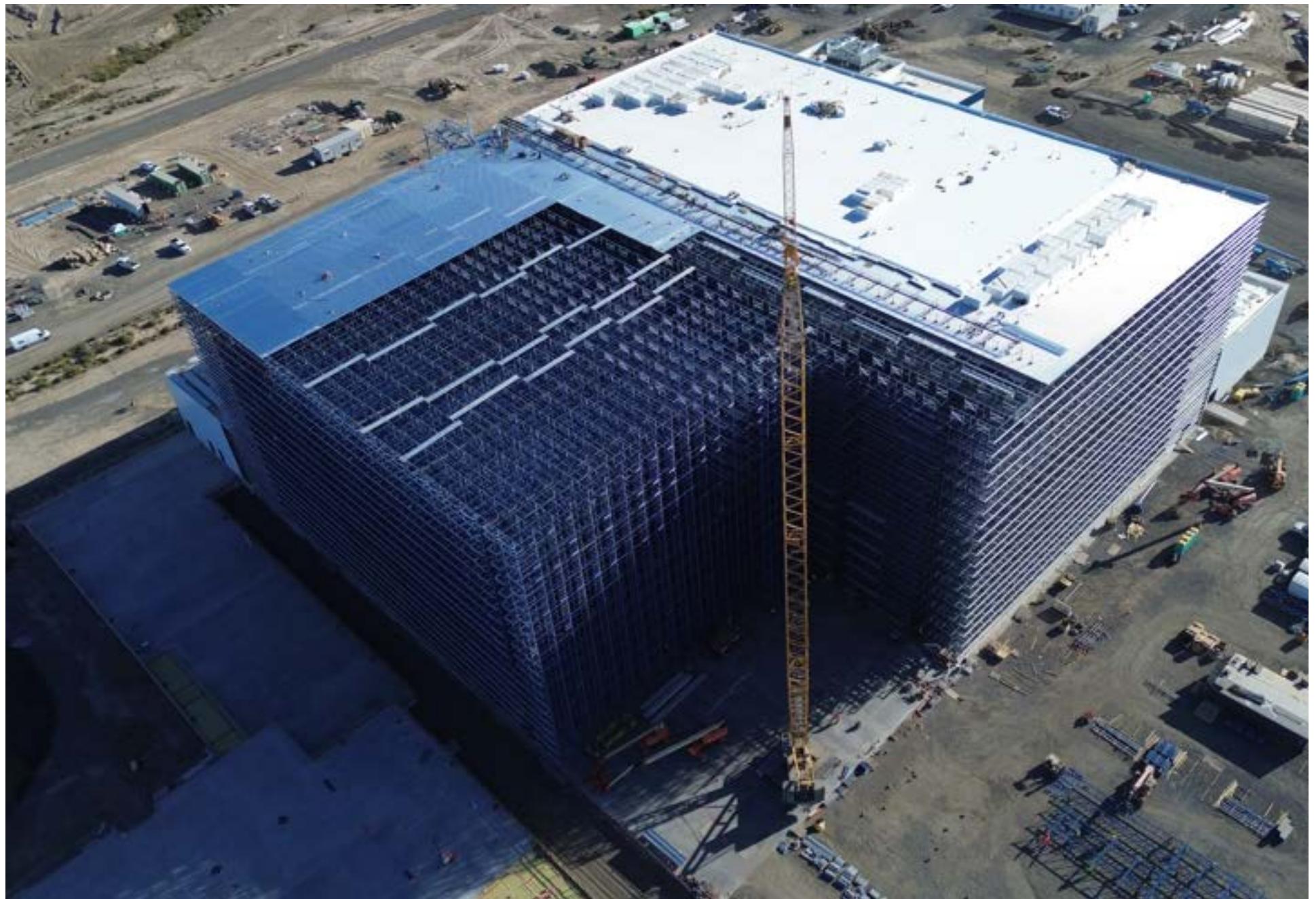
French Drain

Rack Sequence

FISHER CONSTRUCTION GROUP

Rack Sequence

Rack Sequence


FISHER CONSTRUCTION GROUP

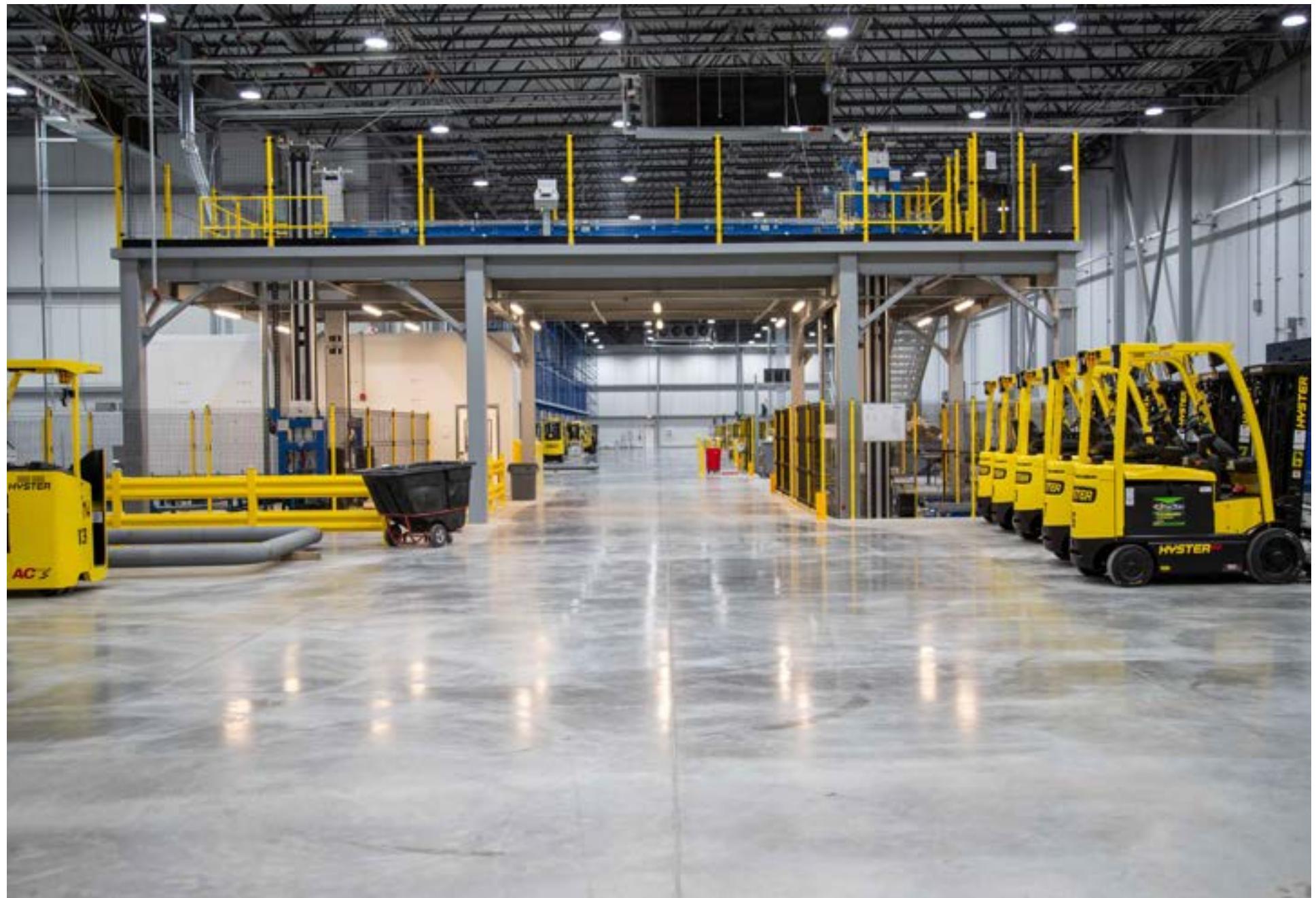
Rack Sequence

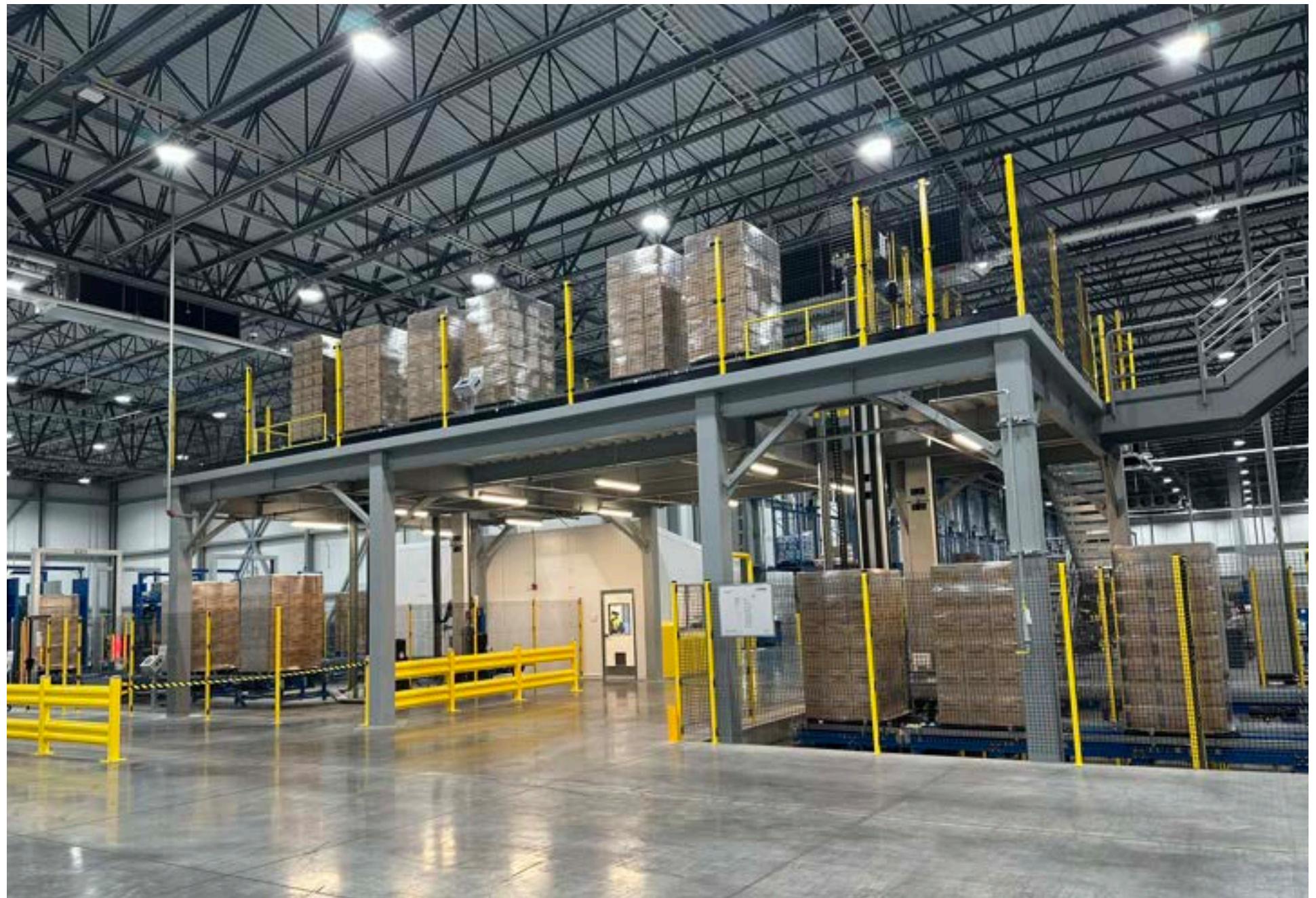
FISHER CONSTRUCTION GROUP

Rack Sequence

FISHER CONSTRUCTION GROUP

Final Appearance - Rail Dock


Final Appearance - Dock


Final Appearance - Low Oxygen

Final Appearance - ATU

Final Appearance - ATU

Final Appearance - Ammonia

HUB Build Northwest Awards Submission
Simplot Company
Rainier High Bay Freezer

Ryan Smith | Juan Arellano
rjs@fishercgi.com | jaa@fishercgi.com

4024 S Grove Road
Spokane, WA 99224

FISHER
CONSTRUCTION GROUP